∫t1 exx(1+x log x)dx=∫t11xexdx+∫x1ex loge x dx =[ex log x]41−∫t1ex log x dx+∫t1ex log x dx =[et log e−e1 log41]=et
∫e(x+1x)(1+x−1x)dx=e(x+1x)f(x)+c then df(x)dx