The correct option is
B 13(x2+y2)−4x−6y−50=0Given:S1:x2+y2−4=0 and S2:x2+y2+2x+3y−5=0 cuts the circle at the points A and B
Join AB
⇒AB is a common chord to the circle.
⇒Common chord equation is
S1−S2=0
⇒x2+y2−4−(x2+y2+2x+3y−5)=0
⇒x2+y2−4−x2−y2−2x−3y+5=0
⇒−2x−3y+1=0
⇒2x+3y−1=0 is the equation of the line AB
Equation of diameter of the circle is S1+λL=0
⇒x2+y2−4+λ(2x+3y−1)=0
⇒x2+y2+2xλ+3yλ−λ−4=0 .........(1)
⇒Centre of the circle is (−λ,−3λ2) lies on the line AB
⇒(−λ,−3λ2) lies on the line 2x+3y−1=0
⇒2×−λ+3×−3λ2−1=0
⇒−2λ−9λ2=1
⇒−4λ−9λ2=1
⇒−13λ2=1
∴λ=−213
Substituting λ=−213 in equation (1) we get
⇒x2+y2+2x×−213+3y×−213−(−213)−4=0
⇒x2+y2−413x−613y+213−4=0
⇒x2+y2−413x−613y+2−5213=0
⇒x2+y2−413x−613y−5013=0
∴13(x2+y2)−4x−6y−50=0 is the required of the circle on AB as diameter.