The common roots of the equations
z3+(1+i)z2+(1+i)z+i=0, (where i=√−1) and z1993+z1994+1=0 are
ω
ω2
z3+(1+i)z2+(1+i)z+i=0
⇒z2(z+i)+z(z+i)+(z+i)=0
⇒(z+i)(z2+z+1)=0
⇒(z+i)(z−ω)(z−ω2)=0
∴z=−i,ω,ω2
Now in z1993+z1994+1 put z=−i,ω,ω2
then (−i)1993+(−i)1994+1=−i−1+1=−i≠0
and (ω)1993+ω1994+1=ω+ω2+1=0
and (ω2)1993+(ω2)1994+1=ω2+ω+1=0