The correct option is A cosx logx+C
The given integral I=∫(cosxx−log xsinx)dxcan be simplified as:I=∫(cosxx−sinx log x)dx⇒I=∫cosxxdx−∫sinx log xdxNow, using integration by parts for first integral, we get:I=∫cosxxdx−∫sinx log xdx⇒I=cosx∫1xdx −∫d cosxdx(∫1xdx)dx −∫sinx log xdx+C⇒I=cosx log(x|dx +∫sinx log xdx −∫sinx log xdx+CThus, cancelling second and third term, we getI=cosx log x+C