The domain of definition of f(x)=√4x−x2 is
R - [0, 4]
R - (0, 4)
(0, 4)
[0, 4]
Given: f(x)=√4x−x2 Clearly, f(x) assumes real values if 4x−x2≥0⇒x(4−x)≥0⇒−x(x−4)≥0⇒x(x−4)≤0⇒xϵ[0,4] Hence, domain (f) = [0, 4]
The possible values of x2+4 lie in the interval