The equation a8x8+a7x7+a6x6+...+a0=0 has all its roots positive and real (where a8=1,a7=−4,a0=128), then
Let the roots be α1,α2,....,α8
⇒ α1+α2+....+α8=4α1α2....α8=128⇒(α1α2....α8)18=12=α1+α2+...+α88
⇒ AM = GM ⇒ all the roots are equal to 12
⇒ a1=−8C7(12)7=−124a2=8C6(12)6=−724a3=−8C5(12)5