The correct option is B exactly three real solutions
Given, x34(log2x)2+log2x−54=√2
⇒34(log2x)2+log2x−54=logx√2⇒34(log2x)2+log2x−54=12log2x⇒3(log2x)3+4(log2x)2−5(log2x)−2=0
Put log2x=y
∴3y3+4y2−5y−2=0⇒(y−1)(y+2)(3y+1)=0⇒y=1,−2,−13⇒log2x=1,−2,−13
x=2,1213,14