The correct option is D ∀x∈R excepting x=nπ2,n∈Z
f(x)=(1+tanx+tan2x)(1−cotx+cot2x)
=1−cotx+cot2x+tanx−1+cotx+tan2x−tanx+1
f(x)=1+cot2x+tan2x
take two +ve numbers cot2x,tan2x
∴ By A.M - G.M. inequality
cot2x+tan2x2≥(tan2xcot2x)12
cot2x+tan2x≥2
f(x)=1+cot2x+tan2x≥3
This is True for xϵR except x=4π2,xϵz because at x=4π2,tanx is not define.