The function fx=seclogx+1+x2 is
Odd
Even
Neither odd nor even
Constant
Explanation for correct answer
We know that in even function fx=f-x
fx=seclogx+1+x2
⇒f-x=seclog-x+1+-x2=seclog1+x2-x=seclog1+x2-x1+x2+x1+x2+x=seclog1+x2-x21+x2+x=seclog11+x2+x=seclog1-log1+x2+x∵logab=loga-logb=sec-log1+x2+x∵log1=0=seclog1+x2+x∵sec-θ=secθ
Therefore fx=f-x, so, the function is even.
Hence, OptionB is correct.
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2