The general solution of y2 dx+(x2−xy+y2)dy=0 is
[EAMCET 2003]
tan−1(xy)+log y+c=0
2 tan−1(xy)+log x+c=0
log(y+√x2+y2)+log y+c=0
sin h−1(xy)+log y+c=0
dxdy+x2−xy+y2y2=0dxdy+(xy)2−(xy)+1=0 Put v=x/y⇒x=vy⇒dxdy=v+ydvdyv+ydvdy+v2−v+1=0⇒dvv2+1+dyy=0⇒∫dvv2+1+∫dyy=0⇒tan−1(v)+log y+C=0⇒tan−1(x/y)+log y+c=0.