The correct option is C 2
We have, f(x)=(x+1)1/3−(x−1)1/3
∴f′(x)=13[1(x+1)2/3−1(x−1)2/3]
=(x−1)2/3−(x+1)2/33(x2−1)2/3
Clearly, f′(x) does exist at x=±1
∴f′(x)=0
⇒(x−1)2/3=(x+1)2/3⇒x=0
Clearly, f′(x)≠0 for any other value of xϵ[0,1]. The value of f(x) at x=0 is 2.
Hence, the greatest value of f(x) is 2.