Given :√xlog2 √x≥2⇒xlog2 √x≥4Taking log both sides with base 2, we get⇒(log2 √x)(log2 x)≥log2 4⇒12(log2 x)(log2 x)≥2⇒(log2 x)2≥4⇒((log2 x)−2]((log2 x)+2]≥0⇒log2 x≤−2 or log2 x≥2⇒x≤2−2 or x≥22⇒x≤14 or x≥4⇒x∈(0, 14]∪[4, ∞)Hence, The option B and C are correct answer