wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The integral sec2x(secx+tanx)92dx equals (for some arbitrary constant k)


A

(secx+tanx)132(17+111(secx+tanx)137)+k

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

(secxtanx)72(17111(secx+tanx)117)+k

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

(secx+tanx)72(17+111(secx+tanx)117)+k

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

(secxtanx)72(17111(secx+tanx)117)+k

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

(secx+tanx)72(17+111(secx+tanx)117)+k


I=sec2x(secx+tanx)92dx

Let secx+tanx=t

secx(secx+tanx)dx=dt

secxdx=dtt

Also, secxtanx=1t

secx=12(t+1t)

Integration becomes I=12(t+1t)t92dtt=12(t92+t132)dt

=12[t92+192+1+t132+1132+1]+k

=12[t7272+t112112]+k

=17t72111t112+k

=t72(17+111t117)+k

=(secx+tanx)72(17+111(secx+tanx)117)+k


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon