The integral ∫sec2x(secx+tanx)92dx equals (for some arbitrary constant k)
−(secx+tanx)−72(17+111(secx+tanx)117)+k
I=∫sec2x(secx+tanx)92dx
Let secx+tanx=t
⇒secx(secx+tanx)dx=dt
⇒secxdx=dtt
Also, secx−tanx=1t
⇒secx=12(t+1t)
Integration becomes I=12∫(t+1t)t92dtt=12∫(t−92+t−132)dt
=12[t−92+1−92+1+t−132+1−132+1]+k
=12[t−72−72+t−112−112]+k
=−17t−72−111t−112+k
=−t−72(17+111t117)+k
=−(secx+tanx)−72(17+111(secx+tanx)117)+k