The correct option is C xtan−1(x)−12ln|1+x2|+c
∫tan−1(x)dx=∫(tan−1(x)×1)dx
=tan1(x)∫1dx−∫[ddx(tan1(x)∫1dx]dx
=tan−1(x)x−∫11+x2xdx
=xtan−1(x)−12∫2x1+x2dx
In the second term, if substitute, t=1+x2 , dt=2xdx, which is the numerator. So we get
∫tan−1(x)dx=xtan−1(x)−12∫dtt
=xtan−1(x)−12ln|t|
Substituting back t = 1+x2
∫tan−1(x)dx=xtan−1(x)−12ln|1+x2|+c