The correct option is B 8+(5−x3)15
Let y=f(x)=(5−(x−8)5)13, then
y3=5−(x−8)5⇒(x−8)5=5−y3
⇒x=8+(5−y3)15
Let, z=g(x)=8+(5−x3)15
Now to check -
f(g(x))=[5−(x−8)5]13
=(5−[(5−x3)15]5)13=(5−5+x3)13=x
Similarly, we can show that f(f(x))=x.
Hence, g(x)=8+(5−x3)15 is the inverse of f(x).