The correct option is
C 25In order to find the maximum or minimum of a function, we differentiate the function once and equate it to zero.
Given, 5sinx−1+5−sinx−1
upon differentiating and equating to zero we get,
5sinx−1log5cosx+5−sinx−1log5(−cosx)=0
(since, ddxax=axloga)
⟹log5cosx(5sinx−1−5−sinx−1)=0
cosx=0 (or) 5sinx−1−5−sinx−1=0
cosx=0⟹x=π2
5sinx−1−5−sinx−1=0⟹5sinx−1=5−sinx−1
when bases are equal, we can equate the powers
⟹sinx−1=−sinx−1⟹2sinx=0
⟹sinx=0⟹x=0
Now, substituting x=π2 in the function, we get
51−1+5−1−1⟹50+5−2⟹1+125⟹2625
Now, substituting x=0 in the function, we get
50−1+5−0−1⟹5−1+5−1⟹15+15⟹25
25 is the least value (since, 2625>25)