L1:ax+by+c=0
L2:a′x+b′y+c′=0
A) If L1&L2 are parallel
then aa′=bb′
Therefore, ab′−a′b=0
B) If L1&L2 are perpendicular
then aba′b′=−1
Therefore, aa′+bb′=0
C) If L1&L2 are identical
then aa′=bb′=cc′
therefore, ab′c′=a′b′c=a′c′b
D) If L1&L2 intersect (1,1)
then a+b+c=a′+b′+c′=0