The lines (lx+my)2−3(mx−ly)2=0 and lx + my + n = 0 form
An equilateral triangle
Lines are
[(l+√3m)x+(m−√3l)y][(l−√3m)x+(m+√3l)y] = 0
and L3=lx+my+n=0.L1andL2.are above two lines.
S1=−frac(l+√3m)(m−√l),S2=−frac(l−√3m)(m+√l),S3=−1m
(Where S1,S2andS3 are slopes of the lines)
θ13=tan−1⎡⎢⎣−(l+√3mm−√3l)+lm1+(l+√3mm−√3l)lm⎤⎥⎦
= tan−1(−√3m2−√3l2l2+m2)=60∘
θ25=tan−1⎡⎢⎣−(l−√3mm+√3l)+lm1+(l−√3mm+√3l)lm⎤⎥⎦
= tan−1(−√3m2+√3l2m2+l2)=tan−1(√3)=60∘
Hence, triangle is equilateral.