The correct option is C +30∘ and 4.77dB
From the given Bode plot, it is clear that corner frequencies,
ωc1=13 and ωc2=1
∴ Transfer function of given system is given by
T(s)=C(s)R(s)=[1+3s1+s]
=[1+Ts1+αTs]
Here,T=3 and αT=1 or α=13
As α<1, therefore the transfer function T(s)
represents lead compensator having α=13
∴ Maximum phase shift,
ϕm=tan−1[1−α2√α]=tan1⎡⎢
⎢
⎢
⎢⎣1−132√3⎤⎥
⎥
⎥
⎥⎦
=tan1[23×√32]=tan−1[1√3]=30∘
∴ϕm=30∘
Also T(jω)=1+j3ω1+jω
∴|T(jω)|=√1+9ω2√1+ω2
∴Gain Gm in dB = 20log|T(jω)|
=20log10[√1+9ω2m√1+ω2m]
Now,ωm=1T√α=1√3
∴ Gm=20log10⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎷1+9×(1√3)21+(1√3)2⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
=20log10⎡⎢
⎢
⎢⎣
⎷1+31+13⎤⎥
⎥
⎥⎦=20log10√3
or Gm=4.77dB