The correct option is C 1e
Let y=logxx
On differentiating w.r.t. x, we get
dydx=x⋅1x−logxx2
dydx=(1−logx)x2
For maximum or minimum, put dydx=0
⇒1−logx=0
⇒x=e
Again, differentiating w.r.t. x, we get
d2ydx2=x2(−1x)−(1−logx)2x(x2)2
=−−x[1+2−2logx]x4
=−(3−2logxx3
At x=e,d2ydx2=−ve<0
It is maximum at x=e.
∴ The maximum value at x=e is
y=logee=1e