The correct option is C n(n+1)d2n+1
Mean ¯¯¯x=(a)+(a+d)+(a+2d)+...+(a+2nd)2n+1
where ¯¯¯x=∑xin
Then, 2n+12(a+a+2nd)2n+1
From an A.P. Sn=n2(a+l) which gives ¯¯¯x=a+nd
The series being a,a+d,a+2d,...,a+(n-1)d,a+nd,a+(n+1)d,...,a+2nd
Mean deviation from the mean
= 1N∑fi[xi−¯¯¯x]
= 12n+1∑[xi−a−nd]
= 12n+1[nd+(n−1)d+(n−2)d+...+d+0+d+...+nd]
= 2d2n+1[n+(n−1)+(n−2)+...1]
= 2d2n+1.n(n+1)2=n(n+1)d2n+1