Let N=(h,k)
Normal is y=−tx+2at+at3.
It is passing through (h,k)
⇒ k=−th+2at+at3
⇒at3+(2a−h)t−k=0
It has 3 roots ⇒ t1,t2,t3
⇒ t1+t2+t3=0...(i)
t1t2+t2t3+t3t1=2a−ha...(ii)
t1t2t3=ka...(iii)
Now P=(at21,2at1), Q(at22,2at2), R(at23,2at3)
S=(a,0), A(0,0), M=(0,k),N=(h,k)
Now,
SP+SQ+SR+SAMN=a+at21+a+at22+a+at23+ah
=4a+a(t21+t22+t23)h
=4a+a{(t1+t2+t3)2−2(t1t2+t2t3+t3t1)}h
Putting values from (i) and (ii), we get
SP+SQ+SR+SAMN=2