Given the curve
x2+2xy−3y2=0
On differentiating this equation with respect to x and we get,
2x+2(xdyd+y)−3×2ydydx=0
⇒x+xdydx+y−3ydydx=0
⇒dydx(x−3y)=−(x+y)
⇒dydx=(x+y)(3y−x)
Slope at point (1,1)
⇒dydx=[(x+y)(3y−x)](1,1)
⇒dydx=[(1+1)(3×1−1)](1,1)
⇒dydx=[22]
⇒dydx=1
Slope of normal
−dxdy=−1dydx=−11=−1
−dxdy=−1
We know that equation of normal
y−y1=−dxdy(x−x1)
At point (1,1)
y−1=−1(x−1)
⇒y−1=−x+1
⇒x+y−2=0
Hence , this is the answer.