The correct option is A 1
We have,
4(log2x)2+1=2log2y and log2x2≥log2y
⇒4(log2x)2+1≤2log2x2
⇒4(log2x)2−4log2x+1≤0
⇒(2log2x−1)2≤0⇒log2x=12⇒x=√2
Since, here there is only one value of x i.e., x=√2
⇒4(log2√2)2+1=2log2y
⇒2=2log2y
⇒y=2
Hence, there is only one ordered pair i.e., (√2,2).