The number of real solutions of the equation
√1+cos2x=√2cos−1(cosx)
in[π2,π]is
We have
√1+cos2x=√2cos−1(cosx)
⇒√2cos2x=√2cos−1(cosx)
⇒|cosx|=cos−1(cosx)
⇒|cosx|=x [∵cos−1cosx=x:xϵ[0,π]]
∵cosx≤0 for x∈[π2,π]
⇒cosx≠x for x∈[π2,π]
Hence, there are 0 real solutions of the given equation.
Therefore, option (a) is correct.