Given eq of plane
x+2y+z=6
x6+y3+z6=1
Comparing above eq with eq of plane in intercept form xx1+yy1+zz1=1
x1=6
y1=3,z1=6
So coordinates of Points A,B,C
A(6,0,0),B(0,3,0),C(0,0,6)
let circumcentre D(x,y,z)
The distance of circumcentre from A,B,C should be same
AD=√(x−6)2+y2+z2
BD=√x2+(y−3)2+z2
CD=√x2+y2+(z−6)2
AD=BD=CD
taking
AD=BD
√(x−6)2+y2+z2=√x2+(y−3)2+z2
on squaring bith sides
(x−6)2+y2+z2=x2+(y−3)2+z2
x2+y2+z2+36−12x=x2+y2+z2+9−6y
36−12x=9−6y
12x−6y=27
4x−2y=9-----(1)
from eq (1) x,y can be
x=32
y=−32
α=32
2α=2×32
2α=3