The points (5,−4,2),(4,−3,1),(7−6,4) and (8,−7,5) are the vertices of
A
A rectangle
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
A square
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A parallelogram
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B A parallelogram Let A=(5,−4,2),B=(4,−3,1),C=(7,−6,4) and D=(8,−7,5). Now, AB=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯4−52+−3+42+1−22 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯1+1+1=¯¯¯3 BC=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯8−72++−7+62++5−42 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯1+1+1=¯¯¯3 CD=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯8−72++−7+62++5−42 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯1+1+1=¯¯¯3 And AD=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯8−52+−7+42+5−22 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯9+9+9=3¯¯¯3 Again Now, position vectors of AB=(4−5)i+(−3+4)j+(1−2)k =−i+k−k BC=(7−4)i+(−6+3)j+(4−1)k =3i−3j+3k Therefore,AB.BC=(−1+j−k).(3i−3j+3k) =−333≠0 Therefore, ABCD is a parallelogram.