The polynomial x3−(a+1)x2−x+4 and x3+(b+2) x2+x−6 leaves a remainder of 0, when divided by (x - 1). Find a, b
a = 3
b = 2
Let f(x) = x3 - (a+1) x2 - x + 4
g(x) = x3 + (b + 2) x2 + x + 6
f(1) = g(1) = 0
f(1) = 13 - (a + 1)1 - 1 + 4 = 0
⇒ -(a + 1) + 4 = 0
⇒ a = 3
g(x) = x3 + (b + 2) x2 + x - 6
g(1) = 1 + (b + 2)1 + 1 - 6 = 0
⇒ -4 + b + 2 = 0
⇒ b = 2