The principal amplitude of sin40°+icos40°5
Find the principal amplitude:
From De Moivre's Theorem we know that for n be a positive integer
cosnθ+isinnθ=cosθ+isinθn
∴sin40°+icos40°5=i5cos40°+1isin40°5
=-12icos40°+ii·isin40°5∵i2=-1=icos40°-isin40°5∵i2=-1=icos5×40°-isin5×40°∵cosnθ+isinnθ=cosθ+isinθn=icos200°-isin200°=icos200°-i2sin200°=sin200°+icos200°∵i2=-1=sin180°+20°+icos180°+20°=-sin20°-icos20°∵sinπ+θ=-sinθ,cosπ+θ=-cosθ=cos90°+20°-isin90°+20°∵sinπ2+θ=cosθ,cosπ2+θ=-sinθ=cos110°-isin110°=cos-110°+isin-110°∵sin-θ=-sinθ,cos-θ=cosθ
For a complex number z=cosθ+isinθ; θ is called principal amplitude
Hence, the principal amplitude is -110°
The amplitude of a complex number is called the principal value amplitude if it lies between.