wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The principal amplitude of sin40°+icos40°5


Open in App
Solution

Find the principal amplitude:

From De Moivre's Theorem we know that for n be a positive integer

cosnθ+isinnθ=cosθ+isinθn

sin40°+icos40°5=i5cos40°+1isin40°5

=-12icos40°+ii·isin40°5i2=-1=icos40°-isin40°5i2=-1=icos5×40°-isin5×40°cosnθ+isinnθ=cosθ+isinθn=icos200°-isin200°=icos200°-i2sin200°=sin200°+icos200°i2=-1=sin180°+20°+icos180°+20°=-sin20°-icos20°sinπ+θ=-sinθ,cosπ+θ=-cosθ=cos90°+20°-isin90°+20°sinπ2+θ=cosθ,cosπ2+θ=-sinθ=cos110°-isin110°=cos-110°+isin-110°sin-θ=-sinθ,cos-θ=cosθ

For a complex number z=cosθ+isinθ; θ is called principal amplitude

Hence, the principal amplitude is -110°


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon