The range off(x)=cosx-sinx is
[-1,1]
(-1,2)
-π2,π2
-2,2
The explanation for the correct answer.
Solve for the range off(x)=cosx-sinx
f(x)=cosx–sinx
=2cosx12–sinx12
=2[cosx×cosπ4–sinx×sinπ4]
=2cos(x+π4
⇒-1≤cosx+π4≤1⇒-2≤2cosx+π4≤2⇒-2≤f(x)≤2
The required range is [-2,2]
Hence, option (D) is the correct answer.