The correct option is C [loge113,∞)
D(f)=R as 3x2−4x+5>0 for any real value of x
f(x)=loge(3x2−4x+5)
⇒f(x)=loge(3(x2−4x3)+5)
=loge(3(x−23)2+113)
Now, 113≤3(x−23)2+113<∞
As logex is strictly increasing function,
loge113≤loge(3(x−23)2+113)<∞
Hence, R(f)=[loge113,∞)