The range of the function f(x)=x2+1[x2+1] is
[1,∞)
[2,∞)
32,∞
None of these
Explanation for the correct option:
Find the range of the given expression
Given, f(x)=x2+1[x2+1]
⇒f(x)=x2+11+x2+1-1
⇒f(x)=x2+1+1(x2+1)-1
Let the term x2+1+1x2+1 be g(x)
For, g(x)
AM≥GM⇒x2+1+1x2+12≥x2+1×1x2+1⇒x2+1+1x2+12≥1⇒x2+1+1x2+1≥2⇒g(x)≥2
But, f(x)=g(x)-1
So,
⇒f(x)≥1
therefore, the range is [1,∞)
Hence the correct option is A.