The set of value(s) of a for which x2+ax+sin−1(x2−4x+5)+cos−1(x2−4x+5)=0 has at least one solution is
x2+ax={sin−1(x2−4x+5)+cos−1(x2−4x+5)}
x(x+a)={sin−1(x2−4x+5)+cos−1(x2−4x+5)}
Since,LHSi.ex(x+a)≥0
x(x+a)=0
x−0,−a
Also,−{sin−1(x2−4x+5)+cos−1(x2−4x+5)}=0
Puttingx=−a
Thenx2−4x+5becomesa2+4a+5
sin−1(a2+4a+5)+cos−1(a2+4a+5)=0
tan−1(a2+4a+5)=−1
a2+4a+5=tan(−1)
a2+4a+5=−π4
Subtracting5frombothsides
a2+4a+5−5=−π4−5
a=−4±√4−π2
a=−2±i√4+π2
Thus, the solution is -2