The correct option is D (−∞,0)∪[9,∞)
The parabola f(x)=x2−(m−3)x+m=0 intersects the x−axis atleast once, so the roots are real
Now,
Case 1: Both the roots are positve,
(i) D≥0⇒(m−3)2−4m≥0⇒m2−10m+9≥0⇒(m−9)(m−1)≥0⇒x∈(−∞,1]∪[9,∞)(ii) f(0)>0⇒m>0(iii) −b2a>0⇒m−32>0⇒m>3⇒m∈(3,∞)∴m∈[9,∞)⋯(1)
Case 2: One positive and one negative root.
So,
f(0)<0
⇒m<0⇒m∈(−∞,0)⋯⋯(2)
Case 3: One roots is 0 and other is positve.
So,
(i) f(0)=0⇒m=0(ii) −b2a>0⇒m−32>0⇒m>3
∴m∈ϕ
Now, using the above equations (1) and (2),
∴m∈(−∞,0)∪[9,∞)