The correct option is A y=18(e8x8−x+78)
Given, d3ydx3−8d2ydx2=0
⇒y3(x)y2(x)=8
Integrating, we get,
lny2(x)=8x+C1
Putting x=0, we have C1=lny2(0)=ln1=0
∴lny2(x)=8x or y2(x)=e8x
⇒y1(x)=e8x8+C2
Again, putting x=0, we have C2=−18
So, y1(x)=18(e8x−1)⇒y=18(e8x8−x)+C3
Putting x=0, we have C3=18−164=764
Thus y=18(e8x8−x+78)