The correct option is B logx=2log(x−y)+yx+c
(x2+xy)dy=(x2+y2)dx or dydx=x2+y2x2+xy
Let yx=v. Then dydx=v+xdvdx
Thus, equation reduces to
xdvdx=1+v21+v−v
=1+v2−v−v21+v
=1−v1+v
or ∫1+v1−vdv=∫dxx
or −∫(1−21−v)dv=∫dxx
or −v−2 log(1−v)=log x+log c
or −yx−2log(x−yx)=log x+log c
or −yx−2log(x−y)+2logx=log x+log c
or log x=2log(x−y)+yx+k where k=log c