The correct option is C z=−i
Let z=x+iy
∴|z|=√x2+y2
z2+|z|=(x+iy)2+√x2+y2=0
⇒x2−y2+2xyi+√x2+y2=0+0i
Equating real and imaginary parts from both sides
x2−y2+√x2+y2=0 ...(1)
and 2xy=0
⇒x=0 or y=0
If y=0
Eqn. (1)→ x2+√x2=0
⇒ x2+|x|=0
When x≥0
x2+x=0⇒x(x+1)=0
⇒x=0 or x=−1 (not possible )
∴y=0⇒x=0⇒z=0
When x<0
x2−x=0⇒x(x−1)=0
⇒x=0 or x=1 (not possible)
If x=0
Eqn. (1)→−y2+|y|=0
When y≥0
−y2+y=0⇒y(y−1)=0
⇒y=0 or y=1
∴x=0⇒y=1⇒z=i
When y<0
−y2−y=0⇒y(y+1)=0
⇒y=0 or y=−1
∴ x=0⇒y=−1⇒z=−i