The correct option is C n(1−x)−x(1−xn)(1−x)2
Let, Sn=1+(1+x)+(1+x+x2)+(1+x+x2+x3)+...........................n terms
So Sn−1=1+(1+x)+(1+x+x2)+(1+x+x2+x3)+........n−1 terms
∴Tn=Sn−Sn−1=1+x+x2+x3+..................xn=1−xn1−x
Therefore, the required summation is,
∑Tn=11−x(∑1−∑xn)=11−x(n−x(1−xn)1−x)
=n(1−x)−x(1−xn)(1−x)2
Hence, option 'C' is correct.