The sum 131+13+231+3+13+23+331+3+5+… to 16 terms is
Tn=13+23+33+⋯+n31+3+5+…n terms=∑3n2[2×1+(n−1)2]
=14×n2(n+1)2n2=14(n2+2n+1) (1)
Now,
Sn=14(∑n2+2∑n+n)
=14[n(n+1)(2n+1)6+2×n(n+1)2+n]
=n24[2n2+3n+1+6n+6+6]
n24[2n2+9n+13]
Putting, n = 16, we get
S16=1624[2(256)+144+13]
=23(669)=446