The correct option is A 1−1(n+1)2n
Given that, Sn=31.2.(12)+42.3.(12)2+53.4.(12)3+...+(n+2n(n+1))(12)n
Now, tr=(r+2r(r+1))(12)r=2[1r2r−1(r+1)2r+1]
Therefore, Sn=∑nr=1tr=2∑nr=1[1r2r−1(r+1)2r+1]
⇒Sn=2[12−12.22+12.22−13.23+......+1n2n−1(n+1)2n+1]
⇒Sn=2[12−1(n+1)2n+1]=1−1(n+1)2n
Ans: A