12−32+52−72+92...−992+−1012
We can write this as
y=12+52+92...1012−32−72−112...−992y=12+(52−32)+(92−72)+...1012−992)a2−b2=(a+b)(a−b)y=1+(5+3)(5−3)+(9+7)(9−7)+...(101+99)(101−99)=1+2(3+5)+2(7+9)+2(11+13)...+2(99+101)y=1+2(3+5+7+11+13+15...99+101)
These sequence 3, 5, 7 ...101 is an A.P with a = 3, d = 2
The sum of this sequence is n2(a+l)
an=a+nd
101=3+n+2
n2=49
So, Sn=492(3+101)=492×104
=2548
Hence y=1+2(2548)
=1+5096
=5097.