The correct option is
B 27eGiven,
∑∞r=1r2(r+1)2r!=∑∞r=1r4+2r3+r2r!
=∑∞r=1r2r!+2r3r!+r4r!
∑∞r=0xrr!=ex=∑∞r=1xr−1(r−1)!
∑∞r=1r2r(r−1)!=∑∞r=1(r−1)(r−1)(r−2)!+1(r−1)!
=∑∞r=21(r−2)!+∑∞r=11(r−1)!
=2e
∑∞r=12r3r!=∑∞r=12r2(r−1)!
=∑∞r=12(r2−1)+2(r−1)!
=∑∞r=22(r+1)(r−2)!+2∑∞r=11(r−1)!
=2[∑∞r=2(r−2)(r−2)!+3(r−2)!]+2e
=2∑∞r=31(r−3)!+6∑∞r=21(r−2)!+2e
=2e+6e+2e=10e
∑∞r=1r4r!=∑∞r=1r3(r−1)!
=∑∞r=1(r3−1)(r−1)!+∑∞r=11(r−1)!
=∑∞r=2(r2+r+1)(r−2)!+e
=∑∞r=2r2−4(r−2)!+(r−2)(r−2)!+7(r−2)!+e
=∑∞r=3r+2(r−3)!+∑∞r=31(r−3)!+7e+e
=∑∞r=3(r−3(r−3)!+5(r−3)!)+e+8e
=∑∞r=41(r−4)!+5e+9e
=e+14e=15e
∑∞r=1r2(r+1)2r!=15e+10e+2e=27e