The correct option is B 2 log 2
Let I=∫1−1 x3+∣∣x∣∣+1x2+2∣∣x∣∣+1dx⇒I=∫1−1 x3x2+2∣∣x∣∣+1dx+∫1−1 |x|+1x2+2∣∣x∣∣+1dx⇒I=∫1−1 x3(|x|+1)2dx+∫1−1 |x|+1(|x|+1)2dxNow, x3(|x|+1)2 is an odd function and,|x|+1(|x|+1)2 is an even function∴∫1−1 x3x2+2∣∣x∣∣+1dx =0 and,∫1−1 |x|+1(|x|+1)2dx=2∫10 |x|+1(|x|+1)2dx∴I=2∫10 |x|+1(|x|+1)2dx⇒I=2∫10 1|x|+1dx=2∫10 1x+1dx⇒I=2 (log (x+1)]10=2(log 2−log 1)⇒I=2 log 2