The value of 2sinx+2cosx is
Since AM of two positive numbers ≥ then G
2sinx+2cosx2≥√2sinx.2cosx
= 2√sinx+cosx=√2√2cos(x−π4
>√2−√2
⇒ 2sinx+2cosx≥2.2−1√2=21−1√2