The correct option is A 311−111
(1+x)10=10C0+10C2x2+....+10C0×10Integrating w.r.t. x between 0 and 2, we get((1+x)1011)20=∣∣(10C0+10C1+x22+10C1x22+10C2x33+...10C10+x1111)∣∣20⇒31111−111=(10C0 2+10C1222+10C2233+...+10C1021111)−0⇒2C0+222c1+233c2+...+21111C10=311−111