Given expression:
3(sinx−cosx)4+6(sinx+cosx)2+4(sin6x+cos6x)
Now,
3(sinx−cosx)4=(1−sin2x)2=3(1−2sin2x+sin22x)⇒3(sinx−cosx)4=3(1−2sin2x+sin22x)⋯(1)6(sinx+cosx)2=6(1+sin2x)⋯(2)4(sin6x+cos6x)=4[(sin2x+cos2x)3−3sin2xcos2x(sin2x+cos2x)]=4[1−34sin22x]=4−3sin22x⇒4(sin6x+cos6x)=4−3sin22x⋯(3)
Using equation (1),(2) and (3),
3(sinx−cosx)4+6(sinx+cosx)2+4(sin6x+cos6x)=13