The value of 50C4+∑r=1656-rC3 is
56C4
56C3
55C33
55C4
Explanation for correct option:Given expression is 50C4+∑r=1656-rC3⇒50C4+∑r=1656-rC3=50C4+55C3+54C3+53C3+52C3+51C3+50C3 =50C4+50C3+55C3+54C3+53C3+52C3+51C3=51C4+51C3+55C3+54C3+53C3+52C3[∵nCr+nCr-1=n+1Cr]=52C4+52C3+55C3+54C3+53C3=53C4+53C3+55C3+54C3=54C4+54C3+55C3=55C4+55C3=56C4
Hence, option(A) is correct
Write the value of ∑6r=156−rC3+50C4.
The value of C450+∑r=16(C356-r) is