Given expression as:
cos(15°) + sin(15°)cos(15°) − sin(15°)
Now, Dividing the given expression by cos15circ in both numerator and dinominator, we get the expression as:
1 + tan(15°)1 − tan(15°) = 1 + tan(15°)1 −(1)(tan(15°))= tan(45°) + tan(15°)1 −tan(45°) tan(15°)= tan(45°+15°)= tan(60°) = √3
Method 2: We know that:
cos(15°) = √3+12√2 & sin(15°) = √3−12√2⇒cos(15°) + sin(15°)cos(15°) − sin(15°)=√3+12√2 + √3−12√2√3+12√2 − √3−12√2=√3+1+√3−1√3+1−√3+1=√3