The correct option is C 34
Given, cos210o−cos10ocos50o+cos210o
=12(2cos210o−2cos10ocos50o+2cos250o)
=12(1+cos20o−(cos60o+cos40o)+1+cos100o)
=12(2+cos20o−12−cos40o+cos(180o−80o))
=12(32+cos20o−(cos80o+cos40o))
=12(32+cos20o−(2cos60ocos20o))
=12(32+cos20o−(2(12)cos20o)
=12(32+cos20o−cos20o)
=12(32)
=34