The correct option is D 114
We have, ∫2−1(x3−x∣∣dxClearly, f(x)=x3−x=x(x−1)(x+1)The signs of f(x) for different values of x are shown as
We observe that:f(x)>0 for all x∈(−1, 0)∪(1, 2) and,f(x)<0 for all x∈(0,1)(f(x)|=(x3−x, if x∈(−1, 0)∪(1, 2)−(x3−x), if x∈(0, 1)∴I=∫0−1∣∣
∣∣x3−x∣∣
∣∣dx+∫10∣∣
∣∣x3−x∣∣
∣∣dx+∫21∣∣
∣∣x3−x∣∣
∣∣dx⇒I=∫0−1(x3−x)dx−∫10(x3−x) dx+∫21(x3−x) dx⇒I=(x44−x22]0−1−(x44−x22]10+(x44−x22]21⇒I=−(14−12)−(14−12)+(164−44)−(14−12)⇒I=34+2=114